# MAVENIR

BUILDING THE FUTURE OF NETWORKS – TODAY. CLOUD-NATIVE. AI-ENABLED. GREEN BY DESIGN.

# 5G Evolution & 6G

**Vikalp Dutt** May 2024





AI & ML and OpenRAN are vital for evolution of 5G, to improve the efficiency and performance multifold.

# **Pro Al Open Silicon** OUDIA. MARVELL Advent of Chipset vendors empowering AI by design. **Multi-Cloud Partnerships** CNF CNF uService uService uService uService Google Cloud Multiple Clouds are vital for Enormous Data for AI/ML

# Intelligent orchestration

with RIC, AI/ML

- Programmable NWs
- RIC based features for **Lower TCO**
- Investment in **Automation**
- Near-RT RIC for new 5G use cases & permit **UE** Scheduler optimization -
  - Traffic Steering
  - **ENERGY** savings
  - **NW SLAs**



# Common Al/ML processes

for E2E NW orchestration and dynamic NW management

- · Al for Location, Compute and Communications
- Al for Radio Units
- Al for RAN Software
- Al for Network Optimization
- Al for advanced Use cases
- Sub-ms AI for Interference mitigation and online ML model update for real time L1 Operations













# Al Driven I Saving Sol

70% of RAN con NW pow

- Nearly 80% of tim lightly loaded
- · Al enabled RIC m shutdown/ wake u load/traffic forecas
- Load balancing be sites is enabled by before cell shutdo
- AI/ML enables sm shutdown based of
- Reduced Power or on User Application
- More components in idle mode and r fewer transmissio on signaling in De









AI & ML and OpenRAN are vital for evolution of 5G, to improve the efficiency and performance multifold.

# Intelligent orchestration

with RIC, AI/ML

- Programmable NWs
- RIC based features for Lower TCO
- Investment in Automation
- Near-RT RIC for new 5G use cases & permit **UE Scheduler** optimization -
  - Traffic Steering
  - **ENERGY** savings
  - **NW SLAs**



# (発 Common Al/ML processes

for E2E NW orchestration and dynamic NW management

- Al for Location, Compute and Communications
- Al for Radio Units
- Al for RAN Software
- Al for Network Optimization
- Al for advanced Use cases
- Sub-ms Al for Interference mitigation and online ML model update for real time L1 Operations



















# **Al Driven Energy Saving Solutions**

70% of RAN consumes total NW power

- Nearly 80% of times cells are lightly loaded
- Al enabled RIC manages Cell shutdown/ wake up based on load/traffic forecast
- Load balancing between cell sites is enabled by Al-forecast before cell shutdown
- Al/ML enables smart channel shutdown based on Load
- Reduced Power on cells based on User Applications
- More components to switch off in idle mode and requires far fewer transmissions of alwayson signaling in Deep Sleeps





# Unique ORA for Energy **Impleme**i

#### Which cell to Shu

- With E2/A1, UE information is co available to nor Algos
- UE specific RSI
- Cell/ Node Special

#### **UE Load Balanci** Shut down

- Near-RT RIC co aggregated Ene KPIs (Total PDC **Energy consum** UE mobility bet
- UEs are intellique best cells







ips

e vital for

for AI/ML



AI & ML and OpenRAN are vital for evolution of 5G, to improve the efficiency and performance multifold.

# Common Al/ML processes

for E2E NW orchestration and dynamic NW management

- Al for Location, Compute and Communications
- Al for Radio Units
- · Al for RAN Software
- Al for Network Optimization
- Al for advanced Use cases
- Sub-ms Al for Interference mitigation and online ML model update for real time L1 Operations













# **Al Driven Energy Saving Solutions**

70% of RAN consumes total **NW** power

- Nearly 80% of times cells are lightly loaded
- Al enabled RIC manages Cell shutdown/ wake up based on load/traffic forecast
- Load balancing between cell sites is enabled by AI-forecast before cell shutdown
- AI/ML enables smart channel shutdown based on Load
- Reduced Power on cells based on User Applications
- More components to switch off in idle mode and requires far fewer transmissions of alwayson signaling in Deep Sleeps





# **Unique ORAN Abilities** for Energy Savings **Implementations**

#### Which cell to Shut down

- With E2/A1, UE level information is continuously available to non-RT RIC AI/ML Algos
- UE specific RSRP/ RSRQ
- Cell/ Node Specific PMs

#### **UE Load Balancing, before** Shut down

- Near-RT RIC considers aggregated Energy Efficiency KPIs (Total PDCP volume / Energy consumed) to decide UE mobility between cells
- UEs are intelligently moved to best cells







mit

ing avings





AI & ML and OpenRAN are vital for evolution of 5G, to improve the efficiency and performance multifold.

# Al Driven Energy Saving Solutions

70% of RAN consumes total NW power

- Nearly 80% of times cells are lightly loaded
- Al enabled RIC manages Cell shutdown/ wake up based on load/traffic forecast
- Load balancing between cell sites is enabled by Al-forecast before cell shutdown
- AI/ML enables smart channel shutdown based on Load
- Reduced Power on cells based on User Applications
- More components to switch off in idle mode and requires far fewer transmissions of alwayson signaling in Deep Sleeps





# Unique ORAN Abilities for Energy Savings Implementations

#### Which cell to Shut down

- With E2/A1, UE level information is continuously available to non-RT RIC AI/ML Algos
- UE specific RSRP/ RSRQ
- Cell/ Node Specific PMs

# UE Load Balancing, before Shut down

- Near-RT RIC considers aggregated Energy Efficiency KPIs (Total PDCP volume / Energy consumed) to decide UE mobility between cells
- UEs are intelligently moved to best cells







zation

cases

erence ne ML eal time











AI & ML and OpenRAN are vital for evolution of 5G, to improve the efficiency and performance multifold.

# Unique ORAN Abilities for Energy Savings Implementations

#### Which cell to Shut down

- With E2/A1, UE level information is continuously available to non-RT RIC AI/ML Algos
- UE specific RSRP/ RSRQ
- Cell/ Node Specific PMs

# UE Load Balancing, before Shut down

- Near-RT RIC considers aggregated Energy Efficiency KPIs (Total PDCP volume / Energy consumed) to decide UE mobility between cells
- UEs are intelligently moved to best cells









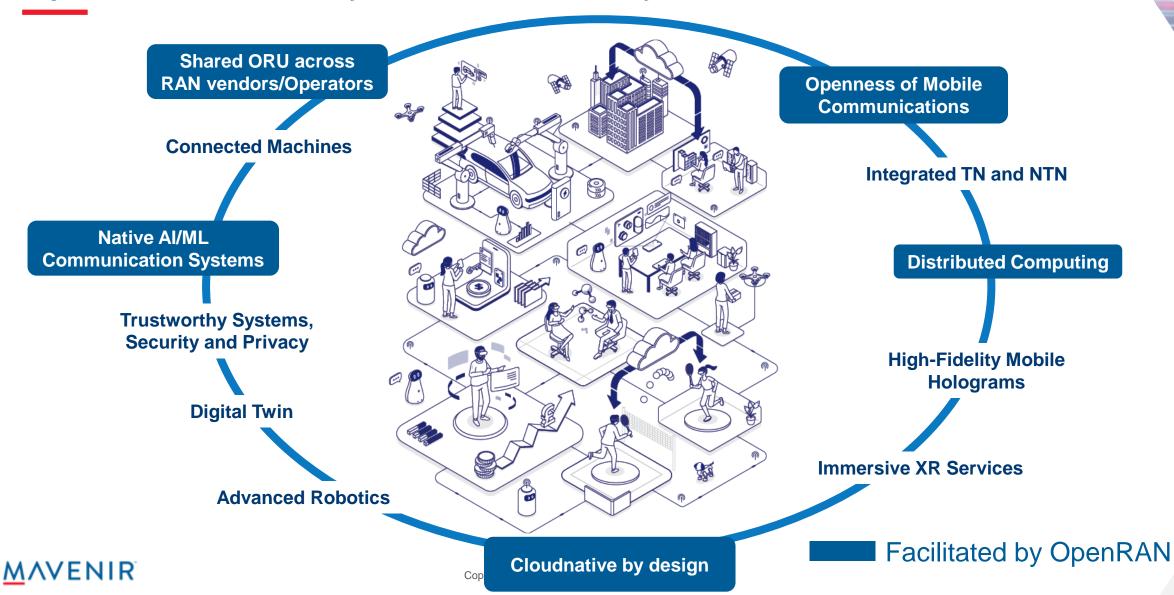






# Top 10 Reasons




- Multi-vendor eco-system → More innovative solutions with Open and standard interfaces
- 2 Open RAN (disaggregated architecture, virtualized NFs, open interfaces) → The computing, and storage resources are distributed across the network and connected via open and low-latency interfaces.
- Disaggregation and interoperability across open interfaces

  → Open RAN enables Independent upgrade of network elements; Multi-operator network sharing strategies
- Open FH interface → Cell-free distributed mMIMO wherein large antenna panels are geographically distributed and connected to a common DU via already existing FHI specified by O-RAN to allow uniform coverage, seamless mobility, and increased capacity
- Centralized RRM (RIC) → Intelligent optimization of network operation. Innovative, differentiable, intelligent RAN services and operation already enabled by O-RAN RIC platforms and interfaces.

- Openness and Programmability → OAM subsystem needs to have a common architectural framework that enables the 6G system to be programmable, open, and interoperable in a multi-vendor environment
- **Open/Merchant Silicon** → Open RAN allows use of open silicon thereby enabling different industry vertical solutions bundled with ubiquitous connectivity
- Cloud-native and multi-tenant → Open RAN architecture with disaggregated and virtualized NFs allow deployment on any cloud with multi-operator sharing solutions
- Al/ML across the entire network & Al-as-a-Service →
  Various use cases of Al-powered network automation including
  fault recovery/root cause analysis, Al-based energy optimization,
  optimal scheduling, and network planning are enabled based on
  innovative Open RAN intelligent controller
- **Edge Computing** → MEC is an enabler of delay-sensitive applications such as AR/VR, holographic communications and autonomous driving. Open RAN architecture has already enabled mobile edge computing and edge cloud operation.



# Open RAN already facilitates key elements of 6G Vision



# Contributions by Mavenir for 5G-Advanced and 6G

#### New spectrum and Real-time Al/ML

- OTFS modulation to deliver high spectral efficiency, no intra-cell interference, resilience to fading, multipath diversity and increased throughput
- > Deeply embedded machine learning







### Network slicing

- Network slicing with nonRT RIC and near-RT RIC and a new RT-RIC with Testbeds
- Wireless Innovation towards Secure,
   Pervasive, Efficient and Resilient
   NextG Networks (6 universities)





### Security

- > Security of E2 interface,
- > Security of xAPPs
- > E2E OpenRAN simulations
- > Core Testbed
- > Northeastern University WiNES





#### Green RAN

- Platform, BIOS, server optimizations for low power with real-time processing
- > Energy savings in gNB and UE enabled by AI/ML at near-Real Time and non-Real Time

#### Non-terrestrial networks

- > Ubiquitous coverage and resilience using dedicated, licensed mobile satellite spectrum.
- > UAV, Drones, HAPS







# Mavenir Focus on technology evolution to 5G-Adv & 6G

#### Radio

- > Real-time AI/ML
- > Advanced positioning, sensing
- Network slicing



## RAN in hybrid cloud

- > Private to Public networks
- Scalable, elastic SBA for RAN



- > Microservice based DU
- Extend SBA core standardization to RAN in 3GPP and O-RAN

#### Hardware/Device

- > New processor architectures
- > Sensing, control, localization
- Al native brand



#### Network architecture

- Digital twinning
- > Computing vs. communication



#### Service enablement

- > Autonomous networks
- > Time sensitive networks



# Trust & Security

- Security aspects with AI
- > Physical layer security





